World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Ring-shaped Thermal Field of Stefanos Crater, Nisyros Island: a Conceptual Model : Volume 5, Issue 1 (01/04/2014)

By Pantaleo, M.

Click here to view

Book Id: WPLBN0004021221
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: The Ring-shaped Thermal Field of Stefanos Crater, Nisyros Island: a Conceptual Model : Volume 5, Issue 1 (01/04/2014)  
Author: Pantaleo, M.
Volume: Vol. 5, Issue 1
Language: English
Subject: Science, Solid, Earth
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Pantaleo, M., & Walter, T. R. (2014). The Ring-shaped Thermal Field of Stefanos Crater, Nisyros Island: a Conceptual Model : Volume 5, Issue 1 (01/04/2014). Retrieved from http://worldlibrary.in/


Description
Description: Department 2, Physics of the Earth, Helmholtz Centre Potsdam, GFZ German Research Centre for Geoscience, Potsdam 14473, Germany. Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the size and permeability variation of these pathways. There may be different explanations for the observed permeability changes, such as fault control, lithology, weathering/alteration, heterogeneous sediment accumulation/erosion and physical changes of the fluids (e.g., temperature and viscosity). A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. We combine high-resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which we interpret to reflect near-surface contrasts of the soil granulometry and volcanotectonic history at depth. We develop a conceptual model of how the ring-shaped thermal field formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.

Summary
The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model

Excerpt
Alyamani, M. S. and Zekâi, Ş.: Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves, Groundwater, 31, 551–555, 1993.; Ambrosio, M., Doveri, M., Fagioli, M. T., Marini, L., Principe, C., and Raco, B.: Water–rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece), J. Volcanol. Geothermal Res., 192, 1, 57–68, 2010.; ASTM-D6913-04: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, Am. Soc. Test. Materials, 6913-04, doi:10.1520/D6913-04R09, 2009.; Aubert, M., Diliberto, S., Finizola, A., and Chébli, Y.: Double origin of hydrothermal convective flux variations in the Fossa of Vulcano (Italy), Bull. Volcanol., 70, 743–751, 2008.; Ball, M. and Pinkerton, H.: Factors affecting the accuracy of thermal imaging cameras in volcanology, J. Geophys. Res. Solid Earth, 111, B11203, doi:10.1029/2005JB003829, 2006.; Benson, C. H. and Trast J. M.: Hydraulic conductivity of thirteen compacted clays, Clays Clay Min., 43, 669–681, 1995.; Bowles, J. E.: Foundation analysis and design, McGraw-Hill Book Company Limited, England, 1988.; Brazier, S., Sparks, R. S. J., Carey, S. N., Sigurdsson, H., and Westgate, J. A.: Bimodal grain size distribution and secondary thickening inait-fall ash layer, Nature, 301, 115–119, 1983.; Bukumirovic, T., Italiano, F., and Nuccio, P.: The evolution of a dynamic geological system: the support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy, J. Volcanol. Geothermal Res., 79, 253–263, 1997.; Caine, J. S., Evans J. P., and Forster C. B.: Fault zone architecture and permeability structure, Geology, 24, 1025–1028, 1996.; Caliro, S., Chiodini, G., Galluzzo, D., Granieri, D., La Rocca, M., Saccorotti, G., and Ventura, G.: Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data, Bull. Volcanol., 67, 358–369, 2005.; Chiodini, G., Brombach, T., Caliro, S., Cardellini, C., Marini, L., and Dietrich, V.: Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece), Geophys. Res. Lett., 29, p. 16, doi:10.1029/2001GL014355, 1759.; Chiodini, G., Cioni, R., Leonis, C., Marini, L., and Raco, B.: Fluid geochemistry of Nisyros island, Dodecanese, Greece, J. Volcanol. Geothermal Res., 56, 95–112, 1993.; Chiodini, G., Vilardo, G., Augusti, V., Granieri, D., Caliro, S., Minopoli, C., and Terranova, C.: Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy), J. Geophys. Res. Solid Earth, 112, B12206, doi:10.1029/2007JB005140, 2007.; Dobson, P. F., Kneafsey, T. J., Hulen, J., and Simmons, A.: Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming, J. Volcanol. Geothermal Res., 123, 313–324, 2003.; Dozier, J.: A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sens. Environ., 11, 221–229, 1981.; Faulkner, D. R., Jackson C. A. L., Lunn R. J., Schlische R. W., Shipton Z. K., Wibberley C. A. J., and Withjack M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, 2010.; Finizola, A., Sortino, F., Lénat, J.-F., Aubert, M., Ripepe, M., and Valenza, M.: The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications, Bull. Volcanol., 65, 486–504, 2003.; Ganas, A., Lagios, E., Petropoulos, G., and Psiloglou, B.: Thermal imaging of Nisyros volcano (Aegean Sea) using ASTER data: estimation of radiative heat flux

 

Click To View

Additional Books


  • Review of Some Significant Claimed Irreg... (by )
  • Subduction or Delamination Beneath Apenn... (by )
  • Axisem: Broadband 3-d Seismic Wavefields... (by )
  • Tectonic Evolution and High-pressure Roc... (by )
  • Mapping Soil Erosion Using Magnetic Susc... (by )
  • Thermal Shock and Splash Effects on Burn... (by )
  • Polyphase Evolution of a Crustal-scale S... (by )
  • Seismic Structure of the Lithosphere Ben... (by )
  • Dynamic Evaluation of Ecosystem Service ... (by )
  • Crustal 3-d Geometry of the Kristineberg... (by )
  • Effective Buoyancy Ratio: a New Paramete... (by )
  • The 11 May 2011 Earthquake at Lorca (SE ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.