World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A New Airborne Laser-induced Fluorescence Instrument for in Situ Detection of Formaldehyde Throughout the Troposphere and Lower Stratosphere : Volume 7, Issue 8 (19/08/2014)

By Cazorla, M.

Click here to view

Book Id: WPLBN0004000309
Format Type: PDF Article :
File Size: Pages 33
Reproduction Date: 2015

Title: A New Airborne Laser-induced Fluorescence Instrument for in Situ Detection of Formaldehyde Throughout the Troposphere and Lower Stratosphere : Volume 7, Issue 8 (19/08/2014)  
Author: Cazorla, M.
Volume: Vol. 7, Issue 8
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Swanson, A. K., Bailey, S. A., Wolfe, G. M., Hanisco, T. F., Arkinson, H. L., & Cazorla, M. (2014). A New Airborne Laser-induced Fluorescence Instrument for in Situ Detection of Formaldehyde Throughout the Troposphere and Lower Stratosphere : Volume 7, Issue 8 (19/08/2014). Retrieved from http://worldlibrary.in/


Description
Description: Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA. The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a standalone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal/noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e-fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

Summary
A new airborne laser-induced fluorescence instrument for in situ detection of Formaldehyde throughout the troposphere and lower stratosphere

Excerpt
Apel, E. C., Olson, J. R., Crawford, J. H., Hornbrook, R. S., Hills, A. J., Cantrell, C. A., Emmons, L. K., Knapp, D. J., Hall, S., Mauldin III, R. L., Weinheimer, A. J., Fried, A., Blake, D. R., Crounse, J. D., Clair, J. M. St., Wennberg, P. O., Diskin, G. S., Fuelberg, H. E., Wisthaler, A., Mikoviny, T., Brune, W., and Riemer, D. D.: Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere, Atmos. Chem. Phys., 12, 1135–1150, doi:10.5194/acp-12-1135-2012, 2012.; Baidar, S., Oetjen, H., Coburn, S., Dix, B., Ortega, I., Sinreich, R., and Volkamer, R.: The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases, Atmos. Meas. Tech., 6, 719–739, doi:10.5194/amt-6-719-2013, 2013.; Barth, M. C., Kim, S. W., Skamarock, W. C., Stuart, A. L., Pickering, K. E., and Ott, L. E.: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone deep convection storm, J. Geophys. Res. Atmos., 112, D13310, doi:10.1029/2006jd008046, 2007.; Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser, H., Carey, L. D., MacGorman, D., Weisman, M., Pickering, K. E., Bruning, E., Anderson, B., Apel, E., Biggerstaff, M., Campos, T., Campuzano-Jost, P., Cohen, R. C., Crounse, J. D., Day, D. A., Diskin, G., Flocke, F., Fried, A., Garland, C., Heikes, B., Honomichi, S., Hornbrook, R., Huey, L. G., Jimenez, J., Lang, T., Lichtenstern, M., Mikoviny, T., O'Sullivan, D., Pan, L., Peischl, J., Pollack, I., Riemer, D., Ryerson, T., Schlager, H., St. Clair, J. M., Walega, J., Weibring, P., Weinheimer, A., Wennberg, P. O., Wisthaler, A., Wooldridge, P. J., and Ziegler, C. : The deep convective clouds and chemistry (DC3) field campaign, J. Geophys. Res. Atmos., submitted, 2014.; Becker, K. H., Schurath, U., and Tatarczyk, T.: Fluorescence determination of low formaldehyde concentrations in air by dye laser excitation, Appl. Optics, 14, 310–313, doi:10.1364/ao.14.000310, 1975.; Cardenas, L. M., Brassington, D. J., Allan, B. J., Coe, H., Alicke, B., Platt, U., Wilson, K. M., Plane, J. M. C., and Penkett, S. A.: Intercomparison of formaldehyde measurements in clean and polluted atmospheres, J. Atmos. Chem., 37, 53–80, doi:10.1023/a:1006383520819, 2000.; Chance, K., Palmer, P. I., Spurr, R. J. D., Martin, R. V., Kurosu, T. P., and Jacob, D. J.: Satellite observations of formaldehyde over North America from GOME, Geophys. Res. Lett., 27, 3461–3464, doi:10.1029/2000gl011857, 2000.; Chatfield, R. B., Ren, X., Brune, W., and Schwab, J.: Controls on urban ozone production rate as indicated by formaldehyde oxidation rate an nitric oxide, Atmos. Environ., 44, 5395–5406, 2010.; Hagopian, J.: Carbon nanotubes for stray light suppression, Art. 9417, NASA Tech. Briefs, 2011.; Co, D. T., Hanisco, T. F., Anderson, J. G., and Keutsch, F. N.: Rotationally resolved absorption cross sections of formaldehyde in the 28100–28500 cm(-1) (351–356 nm) spectral region: Implications for in situ LIF measurements, J. Phys. Chem. A, 109, 10675–10682, doi:10.1021/jp053466i, 2005.; DiGangi, J. P., Boyle, E. S., Karl, T., Harley, P., Turnipseed, A., Kim, S., Cantrell, C., Maudlin III, R. L., Zheng, W., Flocke, F., Hall, S. R., Ullmann, K., Nakashima, Y., Paul, J. B., Wolfe, G. M., Desai, A. R., Kajii, Y., Guenther, A., and Keutsch, F. N.: First direct measurements of formaldehyde flux via eddy covariance: implications for missin

 

Click To View

Additional Books


  • Validation of Satellite Opemw Precipitat... (by )
  • Total Column Co2 Measurements at Darwin,... (by )
  • Accounting for the Effects of Sastrugi i... (by )
  • Towards Validation of Ammonia (NH3) Meas... (by )
  • A Permanent Raman Lidar Station in the A... (by )
  • Measuring Long Chain Alkanes in Diesel E... (by )
  • Effect of Spectrally Varying Albedo of V... (by )
  • An Experiment to Measure Raindrop Collec... (by )
  • Xco2-measurements with a Tabletop Fts Us... (by )
  • The Aquavit-1 Intercomparison of Atmosph... (by )
  • Quantification of Gas-phase Glyoxal and ... (by )
  • Consistency of Long-term Elemental Carbo... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.