World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Ion Motion in the Current Sheet with Sheared Magnetic Field – Part 1: Quasi-adiabatic Theory : Volume 20, Issue 1 (21/02/2013)

By Artemyev, A. V.

Click here to view

Book Id: WPLBN0003988313
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Ion Motion in the Current Sheet with Sheared Magnetic Field – Part 1: Quasi-adiabatic Theory : Volume 20, Issue 1 (21/02/2013)  
Author: Artemyev, A. V.
Volume: Vol. 20, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Neishtadt, A. I., Zelenyi, L. M., & Artemyev, A. V. (2013). Ion Motion in the Current Sheet with Sheared Magnetic Field – Part 1: Quasi-adiabatic Theory : Volume 20, Issue 1 (21/02/2013). Retrieved from

Description: Space Research Institute, RAS, Profsouznaya st., 84/32, GSP-7, 117997 Moscow, Russia. We present a theory of trapped ion motion in the magnetotail current sheet with a constant dawn–dusk component of the magnetic field. Particle trajectories are described analytically using the quasi-adiabatic invariant corresponding to averaging of fast oscillations around the tangential component of the magnetic field. We consider particle dynamics in the quasi-adiabatic approximation and demonstrate that the principal role is played by large (so called geometrical) jumps of the quasi-adiabatic invariant. These jumps appear due to the current sheet asymmetry related to the presence of the dawn–dusk magnetic field. The analytical description is compared with results of numerical integration. We show that there are four possible regimes of particle motion. Each regime is characterized by certain ranges of values of the dawn–dusk magnetic field and particle energy. We find the critical value of the dawn–dusk magnetic field, where jumps of the quasi-adiabatic invariant vanish.

Ion motion in the current sheet with sheared magnetic field – Part 1: Quasi-adiabatic theory

Anastasiadis, A., Gontikakis, C., and Efthymiopoulos, C.: Particle Interactions with Single or Multiple 3D Solar Reconnecting Current Sheets, Sol. Phys., 253, 199–214, doi:10.1007/s11207-008-9234-4, 2008.; Arnold, V. I.: Catastrophe Theory, Springer-Verlag, Berlin, 3rd Edn., 1992.; Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I.: Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems III. Encyclopedia of Mathematical Sciences, Springer-Verlag, New York, 3rd Edn., 2006.; Artemyev, A. V.: A model of one-dimensional current sheet with parallel currents and normal component of magnetic field, Phys. Plasmas, 18, 022104, doi:10.1063/1.3552141, 2011.; Artemyev, A. V., Neishtadt, A. I., and Zelenyi, L. M.: Jumps of adiabatic invariant at the separatrix of a degenerate saddle point, Chaos, 21, 043120, doi:10.1063/1.3657916, 2011.; Baek, S.-C., Choi, D.-I., and Horton, W.: Dawn-dusk magnetic field effects on ions accelerated in the current sheet, J. Geophys. Res., 100, 14935–14942, doi:10.1029/95JA01610, 1995.; Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M., and Zelenyi, L. M.: Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 173, 49–102, 2012.; B{üchner}, J. and Zelenyi, L. M.: Deterministic chaos in the dynamics of charged particles near a magnetic field reversal, Phys. Lett. A, 118, 395–399, doi:10.1016/0375-9601(86)90268-9, 1986.; B{üchner}, J. and Zelenyi, L. M.: Regular and chaotic charged particle motion in magnetotaillike field reversals. I – Basic theory of trapped motion, J. Geophys. Res., 94, 11821–11842, doi:10.1029/JA094iA09p11821, 1989.; B{üchner}, J. and Zelenyi, L. M.: Regular and chaotic particle motion in sheared magnetic field reversals, Adv. Space Res., 11, 177–182, doi:10.1016/0273-1177(91)90030-N, 1991.; Cary, J. R., Escande, D. F., and Tennyson, J. L.: Adiabatic-invariant change due to separatrix crossing, Phys. Rev. A, 34, 4256–4275, 1986.; Chapman, S. C. and Rowlands, G.: Are particles detrapped by constant By in static magnetic reversals?, J. Geophys. Res., 103, 4597–4604, doi:10.1029/97JA01737, 1998.; Chen, J.: Nonlinear dynamics of charged particles in the magnetotail, J. Geophys. Res., 97, 15011–15050, doi:10.1029/92JA00955, 1992.; Landau, L. D. and Lifshitz, E. M.: Vol. 1: Mechanics, Course of Theoretical Physics, Pergamon Press, 1st Edn., 1960.; Chen, J. and Palmadesso, P. J.: Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field, J. Geophys. Res., 91, 1499–1508, doi:10.1029/JA091iA02p01499, 1986.; Delcourt, D. C., Zelenyi, L. M., and Sauvaud, J.-A.: Magnetic moment scattering in a field reversal with nonzero By component, J. Geophys. Res., 105, 349–360, doi:10.1029/1999JA900451, 2000.; Galeev, A. A. and Zelenyi, L. M.: Magnetic reconnection in a space plasma, in: Theoretical and Computational Plasma Physics, 93–116, 1978.; Galeev, A. A., Kuznetsova, M. M., an


Click To View

Additional Books

  • Non-local Deformation Effects in Shear F... (by )
  • Fluctuations in a Quasi-stationary Shall... (by )
  • Mulifractal Phase Transitions: the Origi... (by )
  • Stress States and Moment Rates of a Two-... (by )
  • Linear and Nonlinear Post-processing of ... (by )
  • Transient Behavior in the Lorenz Model :... (by )
  • Modelling Lava Flows by Cellular Nonline... (by )
  • Preface Nonlinear Plasma Waves in Space ... (by )
  • Evaluation of a Spectral Line Width for ... (by )
  • Dissipation Scales in the Earth's Plasma... (by )
  • Baroclinic Instability of a Symmetric, R... (by )
  • Advection/Diffusion of Large Scale Magne... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.